Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations
نویسندگان
چکیده
In this paper, fast numerical methods are established to solve a class of time distributed-order and Riesz space fractional diffusion-wave equations. We derive new difference schemes by weighted shifted Grünwald formula in centered space. The unconditional stability second-order convergence time, the analyzed. one-dimensional case, Gohberg-Semencul utilizing preconditioned Krylov subspace method is developed Toeplitz linear system derived from proposed scheme. two-dimensional we also design global conjugate gradient with truncated preconditioner resulting Sylvester matrix prove that spectrums matrices both cases clustered around 1, such preconditioners converge very quickly. Some experiments carried out demonstrate effectiveness show performances solution algorithms better than other testing methods.
منابع مشابه
Finite difference Schemes for Variable-Order Time fractional Diffusion equation
Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variableorder time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investiga...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملA class of second order difference approximations for solving space fractional diffusion equations
A class of second order approximations, called the weighted and shifted Grünwald difference operators, are proposed for Riemann-Liouville fractional derivatives, with their effective applications to numerically solving space fractional diffusion equations in one and two dimensions. The stability and convergence of our difference schemes for space fractional diffusion equations with constant coe...
متن کاملNon-standard Finite Difference Schemes for Solving Fractional Order Hyperbolic Partial Differential Equations with Riesz Fractional Derivative
In this paper, the Mickens non-standard discretization method which effectively preserves the dynamical behavior of linear differential equations is adapted to solve numerically the fractional order hyperbolic partial differential equations. The fractional derivative is described in the Riesz sense. Special attention is given to study the stability analysis and the convergence of the proposed m...
متن کاملTime-fractional Diffusion of Distributed Order
The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville (R-L) and the Caputo (C) sense. For a general distribution of time orders we provide the fundamental solution, that is still a probability density, in terms of an integral of Laplace type. The kernel depends on the typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2021
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2021.05.003